EEG-based Emotion Recognition for Game Difficulty Control

نویسندگان

  • Sang-Yong Park
  • Han-Moi Sim
  • Won-Hyung Lee
چکیده

Balance design taking game difficulty into account has an important role in game design. In recent years, a number of studies have tried to adjust difficulty by using various player dependent difficulty detection algorithms. But most of these methods need customizing its algorithm for each game. In this paper, we investigate the way to find adaptive game difficulty levels according to player’s emotion by analyzing electroencephalogram (EEG) signals for improving player’s emersion. A player’s EEG signals during playing a rhythm game which has three different difficulty levels were analyzed by using PAD model. We focus on the states of emotion from players EEG signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

Perceived Stress and Cognition Function Quantification in a Scary Video Game: An Electroencephalogram Features and Biochemical Measures

Introduction: Video games affect the stress system and cognitive abilities in different ways. Here, we evaluated electrophysiological and biochemical indicators of stress and assessed their effects on cognition and behavioral indexes after playing a scary video game. Methods: Thirty volunteers were recruited into two groups as control and experimental. The saliva and blood samples were collect...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

بهبود تشخیص خودکار احساسات با استفاده از سیگنالEEG

Emotions play an important role in daily life of human, so the need and importance of automatic emotion recognition have grown with increasing role of Human Computer Interaction (HCI) applications. Since emotion recognition using EEG can show inner emotions, this method is more attention from other ways. In consideration to lack of emotion induction collection for doing such researches at Irani...

متن کامل

應用 SVM 於腦波情緒辨識 SUPPORT VECTOR MACHINE to EMOTIONAL EEG RECOGNITION

Emotion expression is one of essential issues in human-machine interface. Besides, EEG had been widely used in many applications. With EEG based emotion recognition is also very important in affective computing. In this study, we developed an EEG based emotion recognition. Independent component analysis is applied to remove the noise generated from EOG and ECK. Then, the Fractal dimension is us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013